
Eprints Archive Software System Documentation

Robert Tansley Christopher Gutteridge

April 23, 2002

Contents

1 Introduction 2
1.1 Further Help and Bug Reports 2

2 Overview 2
2.1 Directory Structure . 3
2.2 The html Directory . 4
2.3 Eprint and Document File Storage 5

3 Eprints Metadata Handling 6
3.1 Verbose Metadata Field Specification 7
3.2 Terse Metadata Field Specification 8
3.3 The MetaField Class . 9

4 The MySQL Database 9
4.1 Metadata Storage . 10
4.2 Relationships . 10

5 The Searching Mechanism 11
5.1 Searching Metadata Fields . 11

5.1.1 boolean fields . 12
5.1.2 date fields . 12
5.1.3 email, multiurl and url fields 12
5.1.4 enum and eprinttype fields 13
5.1.5 multitext and text fields 13
5.1.6 set, username and subject fields 13
5.1.7 year fields . 14

5.2 Search Expressions . 14
5.3 Interactive and Non-interactive Searches 15
5.4 Search Forms . 15

6 Versioning, Comments and Responses 15
6.1 Comments and Responses . 16

7 Open Archives Interoperability 16

8 Handling of E-mail 17

9 Running Eprints for a Department 17

1

10 Scripted Importing of Data 18

11 Customisation Examples 19
11.1 Listing All Files in a Format . 19

1 Introduction

This document describes the workings of the Eprints archive software, and how
it interacts with the other components to provide services.

What this document does not contain is an API specification. Nor does it
contain detailed information about what each file in the distribution does. The
code is richly commented; this information is by and large not duplicated in
this document. Producing such a document would have delayed the Eprints
release by weeks. The best way to learn about the system, and how to achieve
something, is to look at the code, read the comments therein, and follow the
code’s example. The comprehensiveness of this document should improve over
time.

Before I delve in, a short note about programming style. The code is designed
to be viewed with a tab width of 3. Tabs are always used for indentation.
Indentation of eight spaces is far too much, and using a combination of spaces
and tabs just causes problems.

In your site specific code, and especially if you’re developing the core code
itself, please follow the style of the existing code, and comment richly, to enable
the Eprints software to be easily maintainable in the future.

1.1 Further Help and Bug Reports

Technical queries (not bug reports) concerning the Eprints software should be
sent to:

support@eprints.org

General information queries should be sent to:

info@eprints.org

If you suspect you have found a bug, or an error in the documentation, please
check the bug reporting system at:

http://bugs.eprints.org/

If the problem has not already been reported, submit a bug report to the
system.

Suggestions for new features to add to the software (wishlist items) can also
be submitted to the bug report system.

2 Overview

Eprints works by interacting with several other components, as shown in figure
1. Most interaction occurs through a Web browser interface, though during
installation and in rare circumstances some Eprints scripts are run from a com-
mand line.

2

Figure 1: Overview of the Components of an Eprints archive

2.1 Directory Structure

This section lists and describes the directories in an installed Eprints system.

bin This directory contains various command line scripts. Some are used during
installation and maintenance, some are invoked regularly via crontab or
equivalent, and one is invoked whenever an email message arrives at the
automatic administration account.

cfg Contains the plain text-based configuration files that constitute part of
the site-specific portion of the Eprints archive. They contain informa-
tion about what metadata to hold about each eprint and user, the initial
subject hierarchy and templates for standard mails automatically sent to
users.

cgi Contains the Perl scripts that are invoked by the Apache WWW server.
These scripts create those pages with dynamic content, for example search
results and the eprint depositing interface. It is strongly recommended
that you do not edit the contents of the scripts in this directory, since it
will make upgrading the Eprints software rather difficult. You may wish
to add further scripts; it is recommended that you name these carefully
to avoid name clashes with any scripts that may be added to the core
Eprints software in the future, for example by adding your own prefix
my newscript.

html This directory is the document root for the Apache WWW server. All
static files are stored under this directory. Note that the contents of this di-

3

rectory are managed entirely by the Eprints code, and its contents should
not be manually edited. To manually add static files (e.g. image files
or HTML documents) to the archive, use the static directory and the
generate static script.

html/documents This directory should contain symbolic links to areas eprints
can be stored in. It must contain at least one before the system can run.
See section 2.2 for further details. Note that while it is possible to simply
create a subdirectory in which to store eprint files, this is not recommended
since the contents of the html directory should be considered volatile,
but the eprint files themselves are not.

perl lib/EPrints Contains the core Eprints Perl library files. It is strongly
recommended that you do not edit these files at all, since it will make
upgrading the Eprints software extremely difficult.

perl lib/EPrintSite Contains the Perl library files that constitute part of the
site-specific portion of the software. These contain information that is dif-
ficult or inefficient to store in plain text-based configuration files. If and
when you change or add functionality to the archive, it is strongly recom-
mended that you put as much of the code as possible in this directory.

openarchives Contains the old Open Archives subset of the Dienst software
developed at Cornell University, with some minor modifications to work
with the Eprints software. This code is invoked by the Apache WWW
server to respond to Dienst requests, enabling the harvesting of metadata
in the archive by Open Archives service providers. This protocol is no
longer used by the Open Archives Initiative, but is included for the time
being to allow Eprints archives to be harvested by service providers only
supporting this old protocol.

static Contains the static files (apart from the eprints themselves) that make
up the Eprints WWW site. In the distributed version of Eprints these
include a “home page,” some online help ages for users, the staff page
menu and a general information page. However it is highly likely that
these will end up varying greatly from site to site. You can therefore add,
remove and change as much as you like in this directory. However, it is
recommended that if possible, you do not change the online help files (in
the help directory) since these have been designed to be site-independent,
and will be kept updated with new capabilities and features in new Eprints
releases.

The generate static copies the files in static, including the directory
hierarchy, to the html directory. Non-HTML files are copied verbatim.
HTML files are “filled in” with appropriate values in place of the place-
holders, and given the site “skin” (look and feel) if appropriate.

2.2 The html Directory

The contents of the html directory are controlled entirely by the software; you
should not edit or add things directly. If you want to add an HTML page,
graphic or other miscellaneous file to your site, add it to the static directory

4

and run generate static (or update laf.) The file will be added to the archive
Web server.

In order to reduce processor load, and to enable search engines such as
Google or AltaVista to index them, the “Browse by Subject” views and eprint
abstract pages are generated once and then stored as ordinary .html files.

You don’t generally need to worry about abstract files; the core code updates
these as necessary. If you make a change to the site configuration (e.g. the
HTML “skin”) you can force Eprints to regenerate all of the abstract files by
running the generate abstracts script. (The update laf script will also do
the same job, updating all other pages on the site at the same time.)

The “Browse by Subject” views are generated by running generate views
(or again update laf). This should be done at least once a day; the automatic
installer can install a suitable crontab for you. If your site has a lot of traffic
you may wish the views to be generated more than once a day; this is easy to
achieve by setting up a suitable crontab. Note that in the crontab you should
run generate views, and not update laf, since the latter may regenerate a
large number of pages and affect your server’s performance.

2.3 Eprint and Document File Storage

When an eprint object is created, is it given an ID code, and a directory under
html/documents is created. The ID code is just a prefixed ordinal number; it
holds no information about (say) the date it was created. The advantage of using
a simple number scheme is that it gives the user a great deal of leeway when
entering an ID code into the ‘view eprint’ box; they do not need to remeber how
many digits an ID code has to be for example. Given any unprefixed number
the system can reason about which eprint the user is referring to.

When the eprint object is created, it will alphabetically scan each subdirec-
tory, and the first subdirectory it finds with enough space will be used to store
the new eprint and document files. The name of the directory for the eprint is
worked out from its ID code. An eprint with the idcode ep12345678 will be in
the directory:

12/34/56/78

When the abstract pages of eprints are generated, the system gives the
page the site skin (html head and html tail in SiteInfo.pm), and calls the
eprint render full method in SiteRoutines.pm to obtain the content of the
page. The resulting HTML is stored in a file called index.html in the eprint’s
directory.

Documents files stored with the eprint are stored in further subdirectories. A
collection of document files pertaining to a single storage format have a separate
document ID and are held in a separate directory. This ID is just the same as
the eprint ID, with -00 appended for the first document format, -01 for the
second, and so on.

For example, the eprint ep12345678 might have two associated document
storage formats: A collection of HTML files and a PDF file. In the file system,
this might look like:

12/
34/

5

boolean true or false
date a date (day, month and year)
email an e-mail address
enum one of a specified set of values
eprinttype a type of eprint (generally only used by system)
int integer value (unsigned)
multitext (potentially) several lines of text
multiurl several WWW site addresses
name a person’s name, or list of people’s names
username a person’s eprints username, or list thereof
pagerange a range of pages (or a single page)
set none or more of a specified set of values
subjects none or more subjects in the subject hierarchy
text a short, single line of text
url a WWW site address
year a year

Table 1: Types of Metadata Field in Eprints

56/
78/

index.html
ep12345678-00/

article.html
figure1.gif
figure2.gif

ep12345678-01/
article.pdf

Information about the files stored in each for each document storage format
is not stored in the database; only the name of the file that is to be displayed
first when the user wishes to view that format is stored. In the above example,
that would be article.html for document ep12345678-00, and article.pdf
for document ep12345678-01.

3 Eprints Metadata Handling

This section describes how metadata is specified, stored and accessed in the
Eprints system.

Metadata fields in the Eprints system will be of one of the types listed in
table 1:

When you specify what metadata fields the system should store for each user
or eprint, you need to decide which of the above types should be used for each
field. The system will then know for each field:

• how to render the input fields in HTML

• how to store it in the database

• how to retrieve and search it

6

• how to display it

There are two ways in which these metadata fields may be specified. The
first is a fairly verbose method, akin to an Apache httpd.conf file, used in the
configuration files. In some cases, it is necessary to specify a field in code. In this
case, a second, more terse format is used. The format used in the configuration
files is described first.

3.1 Verbose Metadata Field Specification

A field is specified in the general form:

<field fieldtag>
arg1 = val1
varg2 = val2
...
</field>

Here’s an example. To specify that you want an optional “Title” field con-
taining no more than 40 characters:

<field title>
required = NO
type = "text"
displayname = "Title"
maxlength = 40
editable = YES
visible = YES
</field>

Below is a second example, describing a field in which the user can select
one of three values:

<field ispublished>
editable = YES
type = "enum"
visible = YES
displayname = "Status"
value unpub = "Unpublished"
value inpress = "In Press"
value pub = "Published"
help = "Please state here whether your deposit has been "
help = "published, is currently in the process of being "
help = "published (in press), or has "
help = "not been previously published."
</field>

The various arguments and possible values are listed in table 2. Note that
the field tag, which must be unique, short and contain no spaces, is given in the
<field> line and is used to refer to the field in all other configuration files and
code.

7

Argument Types it applies to Description
type ALL the type of field, from table 1
required ALL is the field required? (YES or NO)
displayname ALL the name of the field to display to

the user.
editable ALL is the field editable by users (as

opposed to purely staff members?)
(YES or NO)

visible ALL is the field globally visible?
help ALL a sentence or two of helpful text to

display above the input box. This
can be repeated, the values are just
concatenated

displaylines multitext, multiurl How tall the input box for the field
should be

maxlength text maximum number of characters al-
lowed (default=255, the maximum
for the text type)

value enum, set repeatable, specifies possible values
for the field. Use in the form VALUE
tag = "Displayed Version".

Table 2: Arguments for Specifying Metadata Fields in a Metadata Schema

3.2 Terse Metadata Field Specification

In order to allow some fields to be specified in-line in the code, there is an
alternative, less human-readable way of specifying a metadata field. These
consist of a single string, in the following form:

fieldname:type:misc arguments:displayable name:required?:
editable?:visible?:indexed?

Descriptions of each part are given below.

fieldname tag for the field (not the displayed name)

type type of field, exactly as with the verbose specification method

misc arguments these vary depending on the type, and are described below.

displayable name name for the field for displaying.

required/editable/visible Correspond to the arguments for the verbose
specification. A ‘1’ means yes, a ‘0’ means no.

indexed This means the field will be indexed by the MySQL database. For
this to be possible, the field must ALWAYS be non-null, and unique. It
is up to the code to ensure that this is the case. For this reason, only
fields specified in code can be indexed in this way; the core code cannot
guarantee that a site-defined metadata field will always have a non-null
value from the moment of record creation.

8

Miscellaneous arguments:

subjects Just a number, 0 or 1, indicating whether or not more than one value
can be selected. If the number is 0, only one value can be selected.

multitext, multiurl Just a number, indicating how many lines high the input
box should be.

enum and set The values the field may be set to. Possible values are separated
by a semicolons. Each possible value is specified as a tag for internal
representation, and a displayable name. For example:

never,Never (Off);daily,Every Day;weekly,Every Week

This means the field can have the value never, daily or weekly, which are
displayed as “Never (Off)”, “Every Day” and “Every Week” respectively.

For example:

datestamp:date::Submission Date:1:0:1:0

This specifies a date field internally called datestamp and displayed to the
user as “Submission Date”. It is a required field, but is not editable. It is
publically visible, but not indexed by the MySQL database.

3.3 The MetaField Class

Regardless of which way the metadata field was specified, it is used to instantiate
a MetaField object. It is by looking at this object that the system works out how
the field should be displayed, stored, searched and read from an HTML form.
Thus, the verbose method is there purely to ease the process of configuring the
metadata that Eprints will store.

4 The MySQL Database

This section describes how the MySQL database is used, and the tables created
and maintained by the Eprints software.

Eprints creates and uses the following tables:

counters Holds incremental counters used to create ID codes without danger
of clashes.

users Hold user records.

inbox The user’s workspace, containing metadata for eprints currently being
deposited.

buffer Contains metadata for eprints that are in the submissions buffer.

archive This is the main one; contains the metadata for the eprints that have
been accepted into the archive.

9

documents Contains information about the eprint document files (e.g. PDFs,
HTML files), such as the format, and which file should be displayed first
when the users wants to view that format. Note that document file infor-
mation for all eprints (in the workspace, buffer and main archive) are all
held in this table.

subjects Contains the subject hierarchy.

subscriptions Contains the subscription (automatic e-mail alerting service)
information.

deletions Holds information about removed eprints, and their replacements,
if they exist.

Most tables are created by reading the relevant metadata field specifications
from the relevant Perl class. The users, inbox, buffer and archive tables have
additional columns. These are read in from the site metadata configuration files
metadata.* in eprints/cfg. The database tables must correspond to these
configuration files in order for the software to be able to extract and store
data in the database correctly. Thus, if one a configuration file is changed, the
database must be changed to match, and vice versa.

Database access is performed using the Database.pm module. This provides
methods to create tables, and create, update and retrieve records.

4.1 Metadata Storage

Due to the fact that the metadata schema is completely configurable by indi-
vidual sites, Eprints cannot store all of the data in third normal form. This
section describes how each metadata field type is stored.

Table 3 shows how each metadata field type is stored in the database. The
may all have the value NULL, provided that the particular field is not a primary
key or indexed field in the database. Site-configured metadata fields may not
be indexed as the core code cannot guarantee that the value will always be
non-NULL from the start.

The name, set and subject types would ideally be stored in extra tables;
however this would greatly increase the complexity of the database and reduce
the performance of searches. A particular advantage with storing names in
this format is that alphabetical ordering by surname can be achieved by simple
ordering in an SQL statement.

The methods in Database.pm automatically escape relevant characters and
so on when instructing and querying the database with SQL. This means that,
for example, you don’t have to worry about prepending double quotes with a
backslash.

4.2 Relationships

Eprints doesn’t actually do any JOINs. Each record in the database (whether
an eprint, document storage format, subject or user) is represented by an ob-
ject in Perl, and one calls appropriate methods to discover related items. For
example, in order to retrieve the document storage formats that a user has de-
posited for a particular eprint, one calls the get all documents method of the
EPrints::EPrint class.

10

Field Type Stored as MySQL Type Internal Representation (MySQL &
Eprints code)

boolean SET(’TRUE’,’FALSE’) ‘TRUE’ or ‘FALSE’
date DATE YYYY-MM-DD
email VARCHAR(255) as-is
enum VARCHAR(255) tag of the selected value
eprinttype VARCHAR(255) tag of the eprint type
int INT UNSIGNED the number
multitext TEXT as-is
multiurl TEXT as-is
username TEXT :username1:username2:
name VARCHAR(255) :surname,firstname

middlename:surname Jr.,
firstname,middlename:

pagerange VARCHAR(255) xxx-yyy, xxx-, -yyy, or xxx
set VARCHAR(255) :tag1:tag2:tag3: tags in alphabet-

ical order
subjects TEXT :tag1:tag2:tag3: tags in alphabet-

ical order
text VARCHAR(255) as-is
url VARCHAR(255) as-is
year INT UNSIGNED YYYY

Table 3: Internal Representation of Metadata

5 The Searching Mechanism

Eprints also knows how to search each of the metadata field types in the
database. In order to do this, for each format, it must:

• Be able to render, and process input from, an HTML form;

• Internally hold and be able to store search terms, for the subscription
mechanism and passing the search terms between methods in the code;

• Transform this internal representation into SQL for querying the database.

This means that Eprints has very powerful search capabilities in that any
metadata field can be searched with fine granularity. The main drawback is that
there is no notion of “relevance” of results; records are either retrieved or not
retrieved, and the ordering is based on (for example) primary author’s surname.

It should be noted that the search capabilities provided by Eprints are in-
tended only as a starting point, in order to make the software useful in isolation,
before Open Archives compliant services become commonplace. In the very near
future, more powerful search and linking engines will be able to provide far more
sophisticated services, and operate over many archives at once.

5.1 Searching Metadata Fields

SearchField.pm is used by can render HTML input boxes for, store and query
individual metadata search fields. It can actually search several fields at once;
just pass in an array of MetaField objects to its constructor.

11

The make meta fields method in SearchExpression.pm can be used to
make an array of MetaField objects by just passing in their names separated
by slashes. So you can call make meta fields with:

title/abstract/keywords

and pass the resulting array into the SearchField constructor to make a
search field that will search the title, abstract and keywords fields at once.
Note that the fields must all use the same HTML input, internal representation
and SQL; see the following sections. So, for example, you can search a text
field and a multitext field as one, but not a text field and a date field.

Details of how the system performs each of the above three tasks for each
metadata field type are given below:

5.1.1 boolean fields

HTML Form: Rendered as a popup menu with three choices, “No preference”,
“Yes” and “no”.

Internal representation: TRUE, FALSE, or NULL (undef in Perl) for no pref-
erence.

In SQL: TRUE or FALSE if a preference is specified; condition left out if no
preference.

5.1.2 date fields

HTML Form: Rendered as a text input field, accepting the internal represen-
tation directly.

Internal representation: One of:

• YYYY-MM-DD: A single day

• YYYY-MM-DD-: Open range, from the given date forwards (inclusive)

• -YYYY-MM-DD: Open range, from the given date backwards (inclusive)

• YYYY-MM-DD-YYYY-MM-DD: Close range between the given dates (in-
clusive)

In SQL: Converted to a simple “LIKE” for single days, greater than/less than
comparisons for open-ended ranges, and “BETWEEN” for a closed range.

5.1.3 email, multiurl and url fields

HTML Form: Rendered as a text input field, accepting the internal represen-
tation directly.

Internal representation: Simple text string

In SQL: Just search for any record where this field contains this string (i.e.
%search text%

12

5.1.4 enum and eprinttype fields

HTML Form: Rendered as a selection list, containing all possible values (in
their displayable form) and “(Any)”. The user may select as many values
as they like. If no value is selected at all, “(Any)” is assumed.

Internal representation: Colon-separated list of values, in internal represen-
tation form, for example value1:value2:value3. Value is undef if any
value is accepted for the search (e.g. if the user clicked on “(Any)” on the
HTML search form.)

In SQL: Each possible value becomes OR’d in the WHERE clause of the SQL
query.

5.1.5 multitext and text fields

HTML Form: Rendered as a text field, with a popup menu to the side indi-
cating how the search terms should be used: “Match all, in any order,”
“Match any” and “Match as a phrase.” The name given to this extra
input field is fieldname srchtype (e.g. title srchtype.)

Internal representation: all, any or phr, indicating “Match all, in any or-
der,” “Match any” and “Match as a phrase” respectively, followed by a
colon, followed by the search terms. For example

any:mind reasoning consciousness

This will match any record containing any of the words “mind,” “reason-
ing” or “consciousness.”

If no search terms have been entered the internal representation is NULL
in MySQL and undef in the Perl code.

In SQL: Depending on what type of matching is to occur (“Match any” etc.)
the search terms are OR’d into separate LIKE terms. Each term has %
appended and prepended so it may be matched anywhere within a field.
The drawback of this is that in particular, entering search terms with
small numbers of letters (e.g. “the” or “a”) will retrieve too many records.

5.1.6 set, username and subject fields

HTML Form: Rendered as a list of possible values, with a popup menu on
the right hand side from which the user can select “Any of these” or “All
of these.” If the user selects “Any of these,” the search will retrieve any
record which has any value the user has selected in the relevant field. If
the user selects “All of these”, a retrieved record must have all of the
values the user has selecetd in the list. The name of this extra input field
is fieldname anyall.

Internal representation: Colon-separated list of the tags the user has se-
lected, followed by ANY or ALL, corresponding to the user’s selection of the
“Any/All of these”popup menu. For example:

13

tag1:tag2:tag3:ANY

This will retrieve records where the field has any one of the values tag1,
tag2 or tag3.

In SQL: Each tag is turned into a LIKE "%:tag:% clause. Multiple tags are
then combined with AND or OR in order to construct the SQL query.

5.1.7 year fields

HTML Form: Rendered as a text input field, accepting the internal represen-
tation directly.

Internal representation: One of:

• YYYY-: A single year

• YYYY-: Open range, from the given year forwards (inclusive)

• -YYYY: Open range, from the given year backwards (inclusive)

• YYYY-YYYY: Close range between the given years (inclusive)

In SQL: Converted to a simple “LIKE” for single years, greater than/less than
comparisons for open-ended ranges, and “BETWEEN” for a closed range.

5.2 Search Expressions

In addition to the individual search fields, other parameters can be set, either
in code or by the user on an HTML form. These parameters, together with the
search fields themselves, are known as a search expression.

A search expression is represented by a SearchExpression object (in the
SearchExpression.pm module.) In addition to the search fields themselves, it
holds:

• The table in the database being searched

• Whether a ‘blank’ search is allowed; that is, can a search with all search
fields left blank be performed? A search with all fields left blank will
simply return the entire database table. Because of the probably impact
on your server, you probably will not want to allow public searches like
this, and this is the default behaviour. However, staff searches can retrieve
an entire database table.

• Whether records should satisfy all search fields to be retrieved, or just
one. Basically, this just means are the search fields AND’d or OR’d?

• How the results should be ordered.

• The default ordering of results.

The ordering is specified in terms of SQL, for example:

year DESC, authors, title

14

This sorts results by descending year, then authors, then title. The
default order if ASCending or DESCending are not specified is ascending.

SearchExpression.pm can also produce a text string which, at a later time,
can be fed back into SearchExpression.pm to recreate the same search. This
technique is used by the subscriptions mechanism to store and retrieve user
subscriptions.

5.3 Interactive and Non-interactive Searches

Search forms are rendered and handled by the SearchForm.pm module. This in
turn uses the SearchExpression.pm module in order to construct the query.

Hence, in code, you should use SearchForm.pm if you are creating an in-
teractive search form, and SearchExpression.pm if your are handling a search
purely in code (for example, for a tailored subscription service.) You should al-
ways use SearchExpression.pm even if your search is only searching one field,
since SearchExpression.pm contains code to construct the SQL query as a
whole.

5.4 Search Forms

SearchForm.pm handles more or less everything to do with an interactive search,
including rendering the form, receiving the user input, performing the search
and presenting the results. Creating a customised search is trivial; see search
and adv search in the eprints/cgi directory are good examples.

You could also quite easily put a “quick search” button on your archive’s
front page using something like the following HTML:

<FORM METHOD="GET" ENCTYPE="application/x-www-form-urlencoded"
ACTION="http://foo.ac.uk/perl/search">
Enter a search term:
<INPUT TYPE="text" NAME="title_abstract_keywords">
<INPUT TYPE="hidden" NAME="title_abstract_keywords_srchtype"
VALUE="all">

<INPUT TYPE="submit" NAME="Search" VALUE="Search">
</FORM>

Note the use of hidden fields to specify defaults. The search scripts will
also use defaults for any values that are omitted from the form. In the above
example, there is no ordering information, so the search will just use the site
default.

6 Versioning, Comments and Responses

The Eprints software features the ability for people to deposit new versions of
eprints in the archive. They do this by entering the ID code of the previous
version into the relevant box in the depositing interface. This (automatically
validated) ID code is then stored in the succeeds field in the eprint’s metadata
record. (succeeds is a core metadata field that is always present; there is no
need to configure this in your site configuration.) No information is stored with
the eprint being succeeded.

15

This usually results in a chain of versions, but may result in a ‘tree’ of
different versions. A set of linked versions of an item are refered to as a “version
thread.” By default, only the user who deposited the eprint may deposit a later
version and link it to the previous version.

This linking information is then used by the default configuration to display
links to all versions of the eprint being viewed. The core code will automatically
work out which abstract pages need to be updated; any eprint in the thread will
have its abstract page re-rendered.

This version information is stored in the deletions table if an eprint is re-
moved from the archive. The “404 Not Found” error document handler then
uses this information to see if a missing document is in fact a previously removed
document, and can then direct the user to a more recent version. Note: For this
to work, the newer version of the eprint must be installed into the main archive
before the old version is removed.

6.1 Comments and Responses

Exactly the same techniques are used to link commentaries and responses. If a
user is submitting an eprint that is a commentary on another eprint, or another
eprint responding to such a commentary, they enter the ID code in the relevant
box on the depositing interface. This is then stored in the commentary field;
again the commentary field is always present and doesn’t have to be added to
your site configuration.

Trees of commentaries and responses are also displayed on the abstract pages
of all relevant items in the default site configuration; you can of course remove
this. Unlike the versioning trees, any user can submit a commentary on (or
response to) another eprint, regardless of who deposited the original eprint.
Information about commentaries and responses are lost (the tree is broken) if
an eprint in the tree is removed.

7 Open Archives Interoperability

A vital component of the software is the interoperability component. Version
1.1 of the software is compliant with the Open Archives Protocol 1.0.

Using the protocol, an Eprints archive can export several metadata sets. By
default only Dublin Core metadata is exported.

Two methods in the SiteRoutines.pm module are used to configure the
metadata your instance of Eprints will export. The oai list metadata formats
method returns a hash, mapping short metadata format names to their XML
namespaces. By default, this just returns a hash defined in SiteInfo.pm:

%EPrintSite::SiteInfo::oai_metadata_formats

Code in the oai get eprint metadata in SiteRoutines.pm is used to map
the site’s internal metadata set to these formats.

For version 1.1, the base URL of the Open Archives protocol will be:

http://your.eprints.server.edu/perl/oai

More information on Open Archives is available from:

16

http://www.openarchives.org/

More information on the Open Archives Protocol is available from:

http://www.openarchives.org/OAI/openarchivesprotocol.htm

8 Handling of E-mail

The Eprints system must be able to send and receive e-mail automatically.
E-mails received in the Eprints archive automatic account (known as the autoad-
min account) must be piped to the standard input of (a newly run) process mail.
It’s a good idea to have your mail system setup such that bounced error mes-
sages and messages sent to mailing lists (spam) are filtered out, for example
using a procmail recipe.

When the software sends a mail, it should appear that it has been sent from
the human-read admin account, so that replies can be directed appropriately.

Eprints understands two types of email automatically:

• Mails with the subject newuser are used to create new user accounts. If an
account for the From: address of the message already exists, a reminder
of the username and password are sent to that address. Otherwise, an
account is created, and an introduction e-mail returned giving the user
their username and password, and instructions on how to proceed.

• Mails with the subject change email and containing the lines:

USERNAME username
PASSWORD abcdef

Provided that the username and password are valid, the e-mail address
associated with that user account will be changed to the address in the
From: line of the e-mail. The reason address changes are handled this way
is that if a user entered an incorrect e-mail address into a box, you have
no way of contacting them to correct it.

If a user wishes e-mail to be directed to an address they cannot send from,
they need to contact the site administration, who can use the user search
and editing facilities in the staff area to change the address for them.

If the email isn’t recognised, a return is sent with instructions on how to use
the Eprints automatic mail processing correctly. You can change the wording of
this text, including the “introduction to the archive” and the “email successfully
changed” by changing the template.* files in the cfg directory.

9 Running Eprints for a Department

It is not unlikely that you will want to run the Eprints software as an archive
for papers, or other media, produced by a department or group with a specific
set of members.

Key modifications you may wish to make might be:

17

• Remove email based user registration.

• Update the users table from your members database with a crontab entry.

• Add one or more username (multiple) fields to metadata of the items
to associate them directly with members. A “Local Authors Usernames”
field, for example.

• Add that field to the advanced search.

• Edit the .htaccess files to use Encrypted passwords

You should try and avoid editing the core files (those in bin, EPrints and
cgi) as these will be overwritten when you next upgrade.

We are planning more support for this in the next release, including example
scripts to import users and a method for building static “view” pages for each
member. This would mean that your members could link from their homepage
to a page listing all their papers (or whatever your archive archives).

10 Scripted Importing of Data

It’s likely that you have a large amount of data in another database or for-
mat that you want to populate your Eprints database with. The Eprints Perl
modules make this importing trivial.

The best place to find information about methods is in the comments in the
source files themselves. To help you get started, a simple example importing
script is given below.

#!/usr/bin/perl -I/opt/eprints/perl_lib
Note: Important you change the -I parameter appropriately

use EPrints::Database;
use EPrints::EPrint;
use EPrints::Session;
use EPrints::User;

The 1 makes this an offline script
my $session = new EPrints::Session(1);

Make a user (if any "create" type function returns undef,
there was an error)
my $bbs_user = EPrints::User->create_user(
$session,
"auto",
"Automated Import User",
"User");

Make an eprint
my $new_eprint = EPrints::EPrint::create(
$session,

18

$EPrints::Database::table_archive,
$bbs_user->{username});

Fill out the fields
$new_eprint->{title} = "This is the title";
This is the internal name format. Or you can use EPrints::Name
module to handle it for you
$new_eprint->{authors} = ":Tansley,Robert:Harnad,Stevan:";

Puts the changes in the database
$new_eprint->commit();

Make a document file
my $document = EPrints::Document::create(
$session,
$new_eprint,
"HTML");

If you think a recursive web suck will work (make sure it
doesn’t grab the whole site!)
my $success = $document->upload_url(
"http://www.foo.ac.uk/Archive/blah.html");

or for more fine tuned uploading
open INPUT, "blah.html" or die "Error opening blah: $!\n";

$document->upload(*INPUT, "blah.html");
$document->set_main("blah.html");

Put changes in database
$document->commit();

Terminate the session
$session->terminate();

11 Customisation Examples

In this section we will give a few examples of simple but useful modifications to
the files in /opt/eprints/perl lib/EPrintSite/ .

11.1 Listing All Files in a Format

In this example we have a data format which has no ”start file”. Our example
format is ”Multiple Images”. It is for an archive which expects you to submit
multiple versions of the same image in different formats - ie. a 10meg TIF, a
2meg TIF and a small JPEG. On the abstract page for this record we want to
list and link to all the files in this format, not just the ”start” file.

19

The code which creates the link to each format from the abstract page is in
SiteRoutines.pm in the subroutine called eprint render full.

$html .= "url()."\">$description
";

If we replace this line with the following code we should get a list of all files
when displaying this format:

if ($_->{format} eq "MULTIPIC")
{
MULITPIC: Multiple Images Format
Special display for this format.
$html .="<P>Multiple Images</P>";
my %files = $_->files();
my $file;
foreach $file (sort keys %files)
{
$html .= "url_stem() . $_->{docid} .

"/" . $file."\">".$file."\n";
}
$html.="";
}
else
{
Display a normal format
$html .= "url()."\">$description
";
}

You will need to run /opt/eprints/bin/update laf to have this take effect
on static pages. To make this take affect on pages generated on the fly (eg.
Viewing item in submission buffer) you will need to restart the webserver.

20

	Introduction
	Further Help and Bug Reports

	Overview
	Directory Structure
	The html Directory
	Eprint and Document File Storage

	Eprints Metadata Handling
	Verbose Metadata Field Specification
	Terse Metadata Field Specification
	The MetaField Class

	The MySQL Database
	Metadata Storage
	Relationships

	The Searching Mechanism
	Searching Metadata Fields
	boolean fields
	date fields
	email, multiurl and url fields
	enum and eprinttype fields
	multitext and text fields
	set, username and subject fields
	year fields

	Search Expressions
	Interactive and Non-interactive Searches
	Search Forms

	Versioning, Comments and Responses
	Comments and Responses

	Open Archives Interoperability
	Handling of E-mail
	Running Eprints for a Department
	Scripted Importing of Data
	Customisation Examples
	Listing All Files in a Format

